28,453 research outputs found

    Appearance and Stability of Anomalously Fluctuating States in Shor's Factoring Algorithm

    Full text link
    We analyze quantum computers which perform Shor's factoring algorithm, paying attention to asymptotic properties as the number L of qubits is increased. Using numerical simulations and a general theory of the stabilities of many-body quantum states, we show the following: Anomalously fluctuating states (AFSs), which have anomalously large fluctuations of additive operators, appear in various stages of the computation. For large L, they decohere at anomalously great rates by weak noises that simulate noises in real systems. Decoherence of some of the AFSs is fatal to the results of the computation, whereas decoherence of some of the other AFSs does not have strong influence on the results of the computation. When such a crucial AFS decoheres, the probability of getting the correct computational result is reduced approximately proportional to L^2. The reduction thus becomes anomalously large with increasing L, even when the coupling constant to the noise is rather small. Therefore, quantum computations should be improved in such a way that all AFSs appearing in the algorithms do not decohere at such great rates in the existing noises.Comment: 11 figures. A few discussions were added in verion 2. Version 3 is the SAME as version 2; only errors during the Web-upload were fixed. Version 4 is the publised version, in which several typos are fixed and the reference list is update

    Thermal Pure Quantum States at Finite Temperature

    Full text link
    An equilibrium state can be represented by a pure quantum state, which we call a thermal pure quantum (TPQ) state. We propose a new TPQ state and a simple method of obtaining it. A single realization of the TPQ state suffices for calculating all statistical-mechanical properties, including correlation functions and genuine thermodynamic variables, of a quantum system at finite temperature.Comment: 5 pages, 3 figures, A shortened version will appear in Phys. Rev. Let

    Cluster Property and Robustness of Ground States of Interacting Many Bosons

    Full text link
    We study spatial correlation functions of local operators of interacting many bosons confined in a box of a large, but volume V, for various `ground states' whose energy densities are almost degenerate. The ground states include the coherent state of interacting bosons (CSIB), the number state of interacting bosons (NSIB), and the number-phase squeezed state of interacting bosons, which interpolates between the CSIB and NSIB. It was shown previously that only the CSIB is robust (i.e., does not decohere for a macroscopically long time) against the leakage of bosons into an environment. We show that for the CSIB the spatial correlation of any local operators A(r) and B(r') (which are localized around r and r', respectively) vanishes as |r - r' | \sim V^{1/3} \to \infty, i.e., the CSIB has the `cluster property.' In contrast, the other ground states do not possess the cluster property. Therefore, we have successfully shown that the robust state has the cluster property. This ensures the consistency of the field theory of bosons with macroscopic theories.Comment: We have replaced the manuscript in order to update the reference list and to fix typos. (5 pages, no figures) In the final manuscript, a few sentences have added for more detailed explanation. Journal PDF at http://jpsj.jps.or.jp/journal/JPSJ-71-1.htm

    Open Virtual Structure Constants and Mirror Computation of Open Gromov-Witten Invariants of Projective Hypersurfaces

    Full text link
    In this paper, we generalize Walcher's computation of the open Gromov-Witten invariants of the quintic hypersurface to Fano and Calabi-Yau projective hypersurfaces. Our main tool is the open virtual structure constants. We also propose the generalized mirror transformation for the open Gromov-Witten invariants, some parts of which are proven explicitly. We also discuss possible modification of the multiple covering formula for the case of higher dimensional Calabi-Yau manifolds. The generalized disk invariants for some Calabi-Yau and Fano manifolds are shown and they are certainly integers after re-summation by the modified multiple covering formula. This paper also contains the direct integration method of the period integrals for higher dimensional Calabi-Yau hypersurfaces in the appendix.Comment: 24pages, 5figure

    Microscopic Description of Nuclear Wobbling Motion -- Rotation of traxially deformed nuclei --

    Get PDF
    The nuclear wobbling motion in the Lu region is studied by the microscopic cranked mean-field plus RPA method. The Woods-Saxon potential is used as a mean-field with a new parameterization which gives reliable description of rapidly rotating nuclei. The prescription of symmetry-preserving residual interaction makes the calculation of the RPA step parameter-free, and we find the wobbling-like RPA solution if the triaxial deformation of the mean-field is suitably chosen. It is shown that the calculated out-of-band B(E2)B(E2) of the wobbling-like solution depends on the triaxial deformation in the same way as in the macroscopic rotor model, and can be used to probe the triaxiality of the nuclear mean-field.Comment: 10 pages, 8 figures, talk at International Conference on Nuclear Structure Physics, Shanghai, June 200

    A model study of cooperative binding of ionic surfactants to oppositely charged flexible polyions

    Full text link
    A novel statistical model for the cooperative binding of monomeric ligands to a linear lattice is developed to study the interaction of ionic surfactant molecules with flexible polyion chain in dilute solution. Electrostatic binding of a ligand to a site on the polyion and hydrophobic associations between the neighboring bound ligands are assumed to be stochastic processes. Ligand association separated by several lattice points within defined width is introduced for the flexible polyion. Model calculations by the Monte Carlo method are carried out to investigate the binding behavior. The hypothesis on the ligand association and its width on the chain are of importance in determining critical aggregation concentration and binding isotherm. The results are reasonable for the interpretations of several surfactant-flexible polyion binding experiments. The implications of the approach are presented and discussed.Comment: 11 pages, 9 figure
    corecore